High-Throughput Nucleotide Sequencing
"High-Throughput Nucleotide Sequencing" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc.
Descriptor ID |
D059014
|
MeSH Number(s) |
E05.393.760.319
|
Concept/Terms |
High-Throughput Nucleotide Sequencing- High-Throughput Nucleotide Sequencing
- High Throughput Nucleotide Sequencing
- Nucleotide Sequencing, High-Throughput
- Sequencing, High-Throughput Nucleotide
Massively-Parallel Sequencing- Massively-Parallel Sequencing
- Massively Parallel Sequencing
- Sequencing, Massively-Parallel
- Sequencings, Massively-Parallel
High-Throughput RNA Sequencing- High-Throughput RNA Sequencing
- High Throughput RNA Sequencing
- RNA Sequencing, High-Throughput
- Sequencing, High-Throughput RNA
Deep Sequencing- Deep Sequencing
- Deep Sequencings
- Sequencing, Deep
- Sequencings, Deep
High-Throughput DNA Sequencing- High-Throughput DNA Sequencing
- DNA Sequencing, High-Throughput
- High Throughput DNA Sequencing
- High-Throughput DNA Sequencings
- Sequencing, High-Throughput DNA
|
Below are MeSH descriptors whose meaning is more general than "High-Throughput Nucleotide Sequencing".
Below are MeSH descriptors whose meaning is more specific than "High-Throughput Nucleotide Sequencing".
This graph shows the total number of publications written about "High-Throughput Nucleotide Sequencing" by people in this website by year, and whether "High-Throughput Nucleotide Sequencing" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
2012 | 0 | 1 | 1 | 2014 | 2 | 2 | 4 | 2015 | 2 | 3 | 5 | 2016 | 2 | 4 | 6 | 2017 | 0 | 5 | 5 |
To return to the timeline, click here.
Below are the most recent publications written about "High-Throughput Nucleotide Sequencing" by people in Profiles.
-
Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC, Hung WC, Haider S, Zhang J, Knight J, Bjornson RD, Castaldi C, Tikhonoa IR, Bilguvar K, Mane SM, Sanders SJ, Mital S, Russell MW, Gaynor JW, Deanfield J, Giardini A, Porter GA, Srivastava D, Lo CW, Shen Y, Watkins WS, Yandell M, Yost HJ, Tristani-Firouzi M, Newburger JW, Roberts AE, Kim R, Zhao H, Kaltman JR, Goldmuntz E, Chung WK, Seidman JG, Gelb BD, Seidman CE, Lifton RP, Brueckner M. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017 Nov; 49(11):1593-1601.
-
Anderson KC, Auclair D, Kelloff GJ, Sigman CC, Avet-Loiseau H, Farrell AT, Gormley NJ, Kumar SK, Landgren O, Munshi NC, Cavo M, Davies FE, Di Bacco A, Dickey JS, Gutman SI, Higley HR, Hussein MA, Jessup JM, Kirsch IR, Little RF, Loberg RD, Lohr JG, Mukundan L, Omel JL, Pugh TJ, Reaman GH, Robbins MD, Sasser AK, Valente N, Zamagni E. The Role of Minimal Residual Disease Testing in Myeloma Treatment Selection and Drug Development: Current Value and Future Applications. Clin Cancer Res. 2017 Aug 01; 23(15):3980-3993.
-
Ferreira CR, Whitehead MT, Leon E. Biotin-thiamine responsive basal ganglia disease: Identification of a pyruvate peak on brain spectroscopy, novel mutation in SLC19A3, and calculation of prevalence based on allele frequencies from aggregated next-generation sequencing data. Am J Med Genet A. 2017 Jun; 173(6):1502-1513.
-
Wood LD, Noë M, Hackeng W, Brosens LA, Bhaijee F, Debeljak M, Yu J, Suenaga M, Singhi AD, Zaheer A, Boyce A, Robinson C, Eshleman JR, Goggins MG, Hruban RH, Collins MT, Lennon AM, Montgomery EA. Patients with McCune-Albright syndrome have a broad spectrum of abnormalities in the gastrointestinal tract and pancreas. Virchows Arch. 2017 Apr; 470(4):391-400.
-
Pérez-Losada M, Alamri L, Crandall KA, Freishtat RJ. Nasopharyngeal Microbiome Diversity Changes over Time in Children with Asthma. PLoS One. 2017; 12(1):e0170543.
-
Pérez-Losada M, Crandall KA, Freishtat RJ. Two sampling methods yield distinct microbial signatures in the nasopharynges of asthmatic children. Microbiome. 2016 Jun 16; 4(1):25.
-
Helman G, Bonkowsky JL, Vanderver A. Neurologist Comfort in the Use of Next-Generation Sequencing Diagnostics: Current State and Future Prospects. JAMA Neurol. 2016 06 01; 73(6):621-2.
-
Hufnagel SB, Martin LJ, Cassedy A, Hopkin RJ, Antommaria AH. Adolescents' preferences regarding disclosure of incidental findings in genomic sequencing that are not medically actionable in childhood. Am J Med Genet A. 2016 08; 170(8):2083-8.
-
Keller MD, Pandey R, Li D, Glessner J, Tian L, Henrickson SE, Chinn IK, Monaco-Shawver L, Heimall J, Hou C, Otieno FG, Jyonouchi S, Calabrese L, van Montfrans J, Orange JS, Hakonarson H. Mutation in IRF2BP2 is responsible for a familial form of common variable immunodeficiency disorder. J Allergy Clin Immunol. 2016 08; 138(2):544-550.e4.
-
Hong S, Hu P, Marino J, Hufnagel SB, Hopkin RJ, Toromanovic A, Richieri-Costa A, Ribeiro-Bicudo LA, Kruszka P, Roessler E, Muenke M. Dominant-negative kinase domain mutations in FGFR1 can explain the clinical severity of Hartsfield syndrome. Hum Mol Genet. 2016 05 15; 25(10):1912-1922.
|
People  People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|